Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.296
Filtrar
1.
Int J Biol Macromol ; 194: 264-275, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34861272

RESUMEN

The Golgi complex is an essential organelle of the eukaryotic exocytic pathway. A subfamily of Golgi matrix proteins, called GRASPs, is central in stress-induced unconventional secretion, Golgi dynamics during mitosis/apoptosis, and Golgi ribbon formation. The Golgi ribbon is vertebrate-specific and correlates with the appearance of two GRASP paralogues and two Golgins (GM130/Golgin45), which form specific GRASP-Golgin pairs. The molecular details of their appearance only in Metazoans are unknown. Moreover, despite new functionalities supported by GRASP paralogy, little is known about their structural and evolutionary differences. Here, we used ancestor sequence reconstruction and biophysical/biochemical approaches to assess the evolution of GRASPs structure/dynamics, fibrillation, and how they started anchoring their Golgin partners. Our data showed that a GRASP ancestor anchored Golgins before gorasp gene duplication in Metazoans. After gene duplication, variations within the GRASP binding pocket determined which paralogue would recruit which Golgin. These interactions are responsible for their specific Golgi location and Golgi ribbon appearance. We also suggest that GRASPs have a long-standing capacity to form supramolecular structures, affecting their participation in stress-induced processes.


Asunto(s)
Aparato de Golgi/fisiología , Proteínas de la Matriz de Golgi/metabolismo , Estrés Fisiológico , Secuencia de Aminoácidos , Proteínas de la Matriz de Golgi/química , Proteínas de la Matriz de Golgi/genética , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Filogenia , Unión Proteica , Conformación Proteica , Transporte de Proteínas , Relación Estructura-Actividad , Termodinámica
2.
Elife ; 102021 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-34842525

RESUMEN

UbiA prenyltransferase domain-containing protein-1 (UBIAD1) utilizes geranylgeranyl pyrophosphate (GGpp) to synthesize the vitamin K2 subtype menaquinone-4. The prenyltransferase has emerged as a key regulator of sterol-accelerated, endoplasmic reticulum (ER)-associated degradation (ERAD) of HMG CoA reductase, the rate-limiting enzyme in synthesis of cholesterol and nonsterol isoprenoids including GGpp. Sterols induce binding of UBIAD1 to reductase, inhibiting its ERAD. Geranylgeraniol (GGOH), the alcohol derivative of GGpp, disrupts this binding and thereby stimulates ERAD of reductase and translocation of UBIAD1 to Golgi. We now show that overexpression of Type 1 polyisoprenoid diphosphate phosphatase (PDP1), which dephosphorylates GGpp and other isoprenyl pyrophosphates to corresponding isoprenols, abolishes protein geranylgeranylation as well as GGOH-induced ERAD of reductase and Golgi transport of UBIAD1. Conversely, these reactions are enhanced in the absence of PDP1. Our findings indicate PDP1-mediated hydrolysis of GGpp significantly contributes to a feedback mechanism that maintains optimal intracellular levels of the nonsterol isoprenoid.


Asunto(s)
Dimetilaliltranstransferasa/metabolismo , Diterpenos/metabolismo , Hidroximetilglutaril-CoA Reductasas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Línea Celular , Degradación Asociada con el Retículo Endoplásmico/fisiología , Aparato de Golgi/fisiología , Humanos , Fosfatos de Poliisoprenilo/metabolismo
3.
Cell ; 184(24): 5950-5969.e22, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34741801

RESUMEN

The biogenesis of mammalian autophagosomes remains to be fully defined. Here, we used cellular and in vitro membrane fusion analyses to show that autophagosomes are formed from a hitherto unappreciated hybrid membrane compartment. The autophagic precursors emerge through fusion of FIP200 vesicles, derived from the cis-Golgi, with endosomally derived ATG16L1 membranes to generate a hybrid pre-autophagosomal structure, HyPAS. A previously unrecognized apparatus defined here controls HyPAS biogenesis and mammalian autophagosomal precursor membranes. HyPAS can be modulated by pharmacological agents whereas its formation is inhibited upon severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or by expression of SARS-CoV-2 nsp6. These findings reveal the origin of mammalian autophagosomal membranes, which emerge via convergence of secretory and endosomal pathways, and show that this process is targeted by microbial factors such as coronaviral membrane-modulating proteins.


Asunto(s)
Autofagosomas/virología , COVID-19/virología , Autofagia , COVID-19/metabolismo , Sistemas CRISPR-Cas , Línea Celular Tumoral , Retículo Endoplásmico/metabolismo , Endosomas/fisiología , Endosomas/virología , Aparato de Golgi/fisiología , Células HEK293 , Células HeLa , Humanos , Fusión de Membrana , Microscopía Confocal , Fagosomas/metabolismo , Fagosomas/virología , Proteínas Qa-SNARE/biosíntesis , Receptores sigma/biosíntesis , SARS-CoV-2 , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/biosíntesis , Sinaptotagminas/biosíntesis , Receptor Sigma-1
4.
Int J Mol Sci ; 22(19)2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34638572

RESUMEN

Spinal muscular atrophy (SMA) is caused by homozygous survival of motor neurons 1 (SMN1) gene deletion, leaving a duplicate gene, SMN2, as the sole source of SMN protein. However, a defect in SMN2 splicing, involving exon 7 skipping, results in a low level of functional SMN protein. Therefore, the upregulation of SMN protein expression from the SMN2 gene is generally considered to be one of the best therapeutic strategies to treat SMA. Most of the SMA drug discovery is based on synthetic compounds, and very few natural compounds have been explored thus far. Here, we performed an unbiased mechanism-independent and image-based screen of a library of microbial metabolites in SMA fibroblasts using an SMN-specific immunoassay. In doing so, we identified brefeldin A (BFA), a well-known inhibitor of ER-Golgi protein trafficking, as a strong inducer of SMN protein. The profound increase in SMN protein was attributed to, in part, the rescue of the SMN2 pre-mRNA splicing defect. Intriguingly, BFA increased the intracellular calcium concentration, and the BFA-induced exon 7 inclusion of SMN2 splicing, was abrogated by the depletion of intracellular calcium and by the pharmacological inhibition of calcium/calmodulin-dependent kinases (CaMKs). Moreover, BFA considerably reduced the expression of Tra2-ß and SRSF9 proteins in SMA fibroblasts and enhanced the binding of PSF and hnRNP M to an exonic splicing enhancer (ESE) of exon 7. Together, our results demonstrate a significant role for calcium and its signaling on the regulation of SMN splicing, probably through modulating the expression/activity of splicing factors.


Asunto(s)
Señalización del Calcio/genética , Expresión Génica/genética , Neuronas Motoras/fisiología , Línea Celular , Retículo Endoplásmico/genética , Retículo Endoplásmico/fisiología , Exones/genética , Fibroblastos/fisiología , Aparato de Golgi/genética , Aparato de Golgi/fisiología , Células HEK293 , Humanos , Atrofia Muscular Espinal/genética , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología , Empalme del ARN/genética , ARN Mensajero/genética , Proteínas del Complejo SMN/genética
6.
Mol Biol Cell ; 32(20): br2, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34260268

RESUMEN

Heterotrimeric G proteins (αßγ) function at the cytoplasmic surface of a cell's plasma membrane to transduce extracellular signals into cellular responses. However, numerous studies indicate that G proteins also play noncanonical roles at unique intracellular locations. Previous work has established that G protein ßγ subunits (Gßγ) regulate a signaling pathway on the cytoplasmic surface of Golgi membranes that controls the exit of select protein cargo. Now, we demonstrate a novel role for Gßγ in regulating mitotic Golgi fragmentation, a key checkpoint of the cell cycle that occurs in the late G2 phase. We show that small interfering RNA-mediated depletion of Gß1 and Gß2 in synchronized cells causes a decrease in the number of cells with fragmented Golgi in late G2 and a delay of entry into mitosis and progression through G2/M. We also demonstrate that during G2/M Gßγ acts upstream of protein kinase D and regulates the phosphorylation of the Golgi structural protein GRASP55. Expression of Golgi-targeted GRK2ct, a Gßγ-sequestering protein used to inhibit Gßγ signaling, also causes a decrease in Golgi fragmentation and a delay in mitotic progression. These results highlight a novel role for Gßγ in regulation of Golgi structure.


Asunto(s)
Puntos de Control de la Fase G2 del Ciclo Celular/fisiología , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Aparato de Golgi/fisiología , Ciclo Celular/fisiología , Membrana Celular/metabolismo , Fase G2/fisiología , Aparato de Golgi/metabolismo , Proteínas de la Matriz de Golgi/metabolismo , Células HeLa , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Mitosis/fisiología , Fosforilación , Proteína Quinasa C/metabolismo , Transporte de Proteínas/fisiología , ARN Interferente Pequeño/metabolismo , Transducción de Señal/fisiología
7.
Metab Brain Dis ; 36(7): 1445-1467, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34173922

RESUMEN

Ischemic stroke is the second leading cause of mortality and disability globally. Neuronal damage following ischemic stroke is rapid and irreversible, and eventually results in neuronal death. In addition to activation of cell death signaling, neuroinflammation is also considered as another pathogenesis that can occur within hours after cerebral ischemia. Under physiological conditions, subcellular organelles play a substantial role in neuronal functionality and viability. However, their functions can be remarkably perturbed under neurological disorders, particularly cerebral ischemia. Therefore, their biochemical and structural response has a determining role in the sequel of neuronal cells and the progression of disease. However, their effects on cell death and neuroinflammation, as major underlying mechanisms of ischemic stroke, are still not understood. This review aims to provide a comprehensive overview of the contribution of each organelle on these pathological processes after ischemic stroke.


Asunto(s)
Accidente Cerebrovascular Isquémico/patología , Enfermedades Neuroinflamatorias/prevención & control , Neuronas/patología , Orgánulos/fisiología , Animales , Muerte Celular , Citosol/fisiología , Retículo Endoplásmico/fisiología , Aparato de Golgi/fisiología , Humanos , Accidente Cerebrovascular Isquémico/complicaciones , Accidente Cerebrovascular Isquémico/etiología , Proteína con Dominio Pirina 3 de la Familia NLR/fisiología , Enfermedades Neuroinflamatorias/etiología , Peroxisomas/fisiología , Ribosomas/fisiología
8.
Clin Transl Oncol ; 23(11): 2195-2205, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34101128

RESUMEN

The Coatomer protein complex subunit beta 2 (COPB2) is involved in the formation of the COPI coatomer protein complex and is responsible for the transport of vesicles between the Golgi apparatus and the endoplasmic reticulum. It plays an important role in maintaining the integrity of these cellular organelles, as well as in maintaining cell homeostasis. More importantly, COPB2 plays key roles in embryonic development and tumor progression. COPB2 is regarded as a vital oncogene in several cancer types and has been implicated in tumor cell proliferation, survival, invasion, and metastasis. Here, we summarize the current knowledge on the roles of COPB2 in cancer development and progression in the context of the hallmarks of cancer.


Asunto(s)
Proteína Coatómero/fisiología , Neoplasias/etiología , Animales , Apoptosis/genética , Apoptosis/fisiología , Muerte Celular Autofágica/fisiología , Ciclo Celular/fisiología , Proliferación Celular/genética , Supervivencia Celular/genética , Proteína Coatómero/genética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Desarrollo Embrionario , Retículo Endoplásmico/fisiología , Aparato de Golgi/fisiología , Homeostasis , Humanos , Ratones , Invasividad Neoplásica/genética , Invasividad Neoplásica/fisiopatología , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/fisiopatología , Neoplasias/patología , Vesículas Transportadoras/fisiología
9.
J Cell Biol ; 220(5)2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33848329

RESUMEN

Cisternae of the Golgi apparatus adhere to each other to form stacks, which are aligned side by side to form the Golgi ribbon. Two proteins, GRASP65 and GRASP55, previously implicated in stacking of cisternae, are shown to be required for the formation of the Golgi ribbon.


Asunto(s)
Aparato de Golgi/metabolismo , Aparato de Golgi/fisiología , Proteínas de la Matriz de Golgi/metabolismo , Animales , Consenso , Citocinesis/fisiología , Mamíferos/metabolismo , Mamíferos/fisiología , Proteínas de la Membrana/metabolismo , Mitosis/fisiología , Transporte de Proteínas/fisiología
10.
Mol Biol Cell ; 32(12): 1181-1192, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33826367

RESUMEN

After growing on surfaces, including those of medical and industrial importance, fungal biofilms self-generate internal microenvironments. We previously reported that gaseous microenvironments around founder Aspergillus nidulans cells change during biofilm formation causing microtubules to disassemble under control of the hypoxic transcription factor SrbA. Here we investigate if biofilm formation might also promote changes to structures involved in exocytosis and endocytosis. During biofilm formation, the endoplasmic reticulum (ER) remained intact but ER exit sites and the Golgi apparatus were modified as were endocytic actin patches. The biofilm-driven changes required the SrbA hypoxic transcription factor and could be triggered by nitric oxide, further implicating gaseous regulation of biofilm cellular architecture. By tracking green fluorescent protein (GFP)-Atg8 dynamics, biofilm founder cells were also observed to undergo autophagy. Most notably, biofilm cells that had undergone autophagy were triggered into further autophagy by spinning disk confocal light. Our findings indicate that fungal biofilm formation modifies the secretory and endocytic apparatus and show that biofilm cells can also undergo autophagy that is reactivated by light. The findings provide new insights into the changes occurring in fungal biofilm cell biology that potentially impact their unique characteristics, including antifungal drug resistance.


Asunto(s)
Aspergillus nidulans/ultraestructura , Autofagia , Biopelículas , Retículo Endoplásmico/fisiología , Luz , Aspergillus nidulans/fisiología , Endocitosis , Retículo Endoplásmico/metabolismo , Exocitosis , Proteínas Fúngicas/metabolismo , Aparato de Golgi/metabolismo , Aparato de Golgi/fisiología , Microtúbulos/metabolismo , Factores de Transcripción/metabolismo
11.
Commun Biol ; 4(1): 389, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33758369

RESUMEN

Eukaryotic cells are complex systems compartmentalized in membrane-bound organelles. Visualization of organellar electrical activity in living cells requires both a suitable reporter and non-invasive imaging at high spatiotemporal resolution. Here we present hVoSorg, an optical method to monitor changes in the membrane potential of subcellular membranes. This method takes advantage of a FRET pair consisting of a membrane-bound voltage-insensitive fluorescent donor and a non-fluorescent voltage-dependent acceptor that rapidly moves across the membrane in response to changes in polarity. Compared to the currently available techniques, hVoSorg has advantages including simple and precise subcellular targeting, the ability to record from individual organelles, and the potential for optical multiplexing of organellar activity.


Asunto(s)
Técnicas Biosensibles , Retículo Endoplásmico/fisiología , Aparato de Golgi/fisiología , Potenciales de la Membrana , Microscopía Fluorescente , Imagen Óptica , Animales , Retículo Endoplásmico/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Genes Reporteros , Aparato de Golgi/metabolismo , Células HEK293 , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Células MCF-7 , Optogenética , Células PC12 , Ratas
13.
Mol Biol Cell ; 32(10): 1064-1080, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33788598

RESUMEN

Proper Golgi complex function depends on the activity of Arf1, a GTPase whose effectors assemble and transport outgoing vesicles. Phosphatidylinositol 4-phosphate (PI4P) generated at the Golgi by the conserved PI 4-kinase Pik1 (PI4KIIIß) is also essential for Golgi function, although its precise roles in vesicle formation are less clear. Arf1 has been reported to regulate PI4P production, but whether Pik1 is a direct Arf1 effector is not established. Using a combination of live-cell time-lapse imaging analyses, acute PI4P depletion experiments, and in vitro protein-protein interaction assays on Golgi-mimetic membranes, we present evidence for a model in which Arf1 initiates the final stages of Golgi maturation by tightly controlling PI4P production through direct recruitment of the Pik1-Frq1 PI4-kinase complex. This PI4P serves as a critical signal for AP-1 and secretory vesicle formation, the final events at maturing Golgi compartments. This work therefore establishes the regulatory and temporal context surrounding Golgi PI4P production and its precise roles in Golgi maturation.


Asunto(s)
Aparato de Golgi/fisiología , Fosfatos de Fosfatidilinositol/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , 1-Fosfatidilinositol 4-Quinasa/fisiología , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas de Unión al Calcio/fisiología , Diglicéridos/metabolismo , Unión Proteica , Saccharomycetales , Vesículas Secretoras/fisiología , Imagen de Lapso de Tiempo
15.
J Virol ; 95(3)2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33208442

RESUMEN

Hepatitis C virus (HCV) infection triggers Golgi fragmentation through the Golgi-resident protein immunity-related GTPase M (IRGM). Here, we report the roles of NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) and ASC (apoptosis-associated speck-like protein containing a caspase activation and recruitment domain [CARD]), two inflammasome components, in the initial events leading to this fragmentation. We show that ASC resides at the Golgi with IRGM at homeostasis. Upon infection, ASC dissociates from both IRGM and the Golgi and associates with HCV-induced NLRP3. NLRP3 silencing inhibits Golgi fragmentation. ASC silencing disrupts the Golgi structure in both control and infected cells and reduces the localization of IRGM at the Golgi. IRGM depletion in the ASC-silenced cells cannot totally restore the Golgi structure. These data highlight a role for ASC, upstream of the formation of the inflammasome, in regulating IRGM through its control on the Golgi. A similar mechanism occurs in response to nigericin treatment, but not in cells infected with another member of the Flaviviridae family, Zika virus (ZIKV). We propose a model for a newly ascribed function of the inflammasome components in Golgi structural remodeling during certain stimuli.IMPORTANCE Numerous pathogens can affect cellular homeostasis and organelle dynamics. Hepatitis C virus (HCV) triggers Golgi fragmentation through the immunity-related GTPase M (IRGM), a resident Golgi protein, to enhance its lipid supply for replication. Here, we reveal the role of the inflammasome components NLRP3 and ASC in this process, thus uncovering a new interplay between effectors of inflammation and viral infection or stress. We show that the inflammasome component ASC resides at the Golgi under homeostasis and associates with IRGM. Upon HCV infection, ASC is recruited to NLRP3 and dissociates from IRGM, causing Golgi fragmentation. Our results uncover that aside from their known function in the inflammation response, these host defense regulators also ensure the maintenance of intact intracellular structure in homeostasis, while their activation relieves factors leading to Golgi remodeling.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD/metabolismo , Proteínas de Unión al GTP/metabolismo , Aparato de Golgi/fisiología , Hepacivirus/aislamiento & purificación , Hepatitis C/virología , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Apoptosis , Proteínas Adaptadoras de Señalización CARD/genética , Proteínas de Unión al GTP/genética , Aparato de Golgi/virología , Hepatitis C/metabolismo , Hepatitis C/patología , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR/genética
16.
J Neurosci ; 41(2): 215-233, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33208468

RESUMEN

Rare genetic diseases preponderantly affect the nervous system causing neurodegeneration to neurodevelopmental disorders. This is the case for both Menkes and Wilson disease, arising from mutations in ATP7A and ATP7B, respectively. The ATP7A and ATP7B proteins localize to the Golgi and regulate copper homeostasis. We demonstrate genetic and biochemical interactions between ATP7 paralogs with the conserved oligomeric Golgi (COG) complex, a Golgi apparatus vesicular tether. Disruption of Drosophila copper homeostasis by ATP7 tissue-specific transgenic expression caused alterations in epidermis, aminergic, sensory, and motor neurons. Prominent among neuronal phenotypes was a decreased mitochondrial content at synapses, a phenotype that paralleled with alterations of synaptic morphology, transmission, and plasticity. These neuronal and synaptic phenotypes caused by transgenic expression of ATP7 were rescued by downregulation of COG complex subunits. We conclude that the integrity of Golgi-dependent copper homeostasis mechanisms, requiring ATP7 and COG, are necessary to maintain mitochondria functional integrity and localization to synapses.SIGNIFICANCE STATEMENT Menkes and Wilson disease affect copper homeostasis and characteristically afflict the nervous system. However, their molecular neuropathology mechanisms remain mostly unexplored. We demonstrate that copper homeostasis in neurons is maintained by two factors that localize to the Golgi apparatus, ATP7 and the conserved oligomeric Golgi (COG) complex. Disruption of these mechanisms affect mitochondrial function and localization to synapses as well as neurotransmission and synaptic plasticity. These findings suggest communication between the Golgi apparatus and mitochondria through homeostatically controlled cellular copper levels and copper-dependent enzymatic activities in both organelles.


Asunto(s)
Cobre/fisiología , Aparato de Golgi/fisiología , Homeostasis/fisiología , Biogénesis de Organelos , Sinapsis/fisiología , Adenosina Trifosfatasas/metabolismo , Animales , Animales Modificados Genéticamente , Línea Celular , Cobre/toxicidad , ATPasas Transportadoras de Cobre/genética , Drosophila , Estimulación Eléctrica , Espacio Extracelular/metabolismo , Femenino , Humanos , Masculino , ARN Interferente Pequeño , Sinapsis/ultraestructura
17.
Elife ; 92020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33295871

RESUMEN

The switch from centrosomal microtubule-organizing centers (MTOCs) to non-centrosomal MTOCs during differentiation is poorly understood. Here, we identify AKAP6 as key component of the nuclear envelope MTOC. In rat cardiomyocytes, AKAP6 anchors centrosomal proteins to the nuclear envelope through its spectrin repeats, acting as an adaptor between nesprin-1α and Pcnt or AKAP9. In addition, AKAP6 and AKAP9 form a protein platform tethering the Golgi to the nucleus. Both Golgi and nuclear envelope exhibit MTOC activity utilizing either AKAP9, or Pcnt-AKAP9, respectively. AKAP6 is also required for formation and activity of the nuclear envelope MTOC in human osteoclasts. Moreover, ectopic expression of AKAP6 in epithelial cells is sufficient to recruit endogenous centrosomal proteins. Finally, AKAP6 is required for cardiomyocyte hypertrophy and osteoclast bone resorption activity. Collectively, we decipher the MTOC at the nuclear envelope as a bi-layered structure generating two pools of microtubules with AKAP6 as a key organizer.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas del Citoesqueleto/metabolismo , Aparato de Golgi/fisiología , Centro Organizador de los Microtúbulos/fisiología , Miocitos Cardíacos/metabolismo , Membrana Nuclear/fisiología , Proteínas de Anclaje a la Quinasa A/genética , Animales , Antígenos/genética , Antígenos/metabolismo , Línea Celular , Proteínas del Citoesqueleto/genética , Regulación de la Expresión Génica , Humanos , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Osteoclastos/metabolismo , Ratas , Ratas Sprague-Dawley
18.
STAR Protoc ; 1(2): 100100, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-33111127

RESUMEN

Detailed study of cellular organelles requires their isolation. Several protocols have been described for the isolation of the Golgi apparatus from liver tissue, but these are not suitable and not reproducible in harder tissues. Here, we describe a protocol to isolate Golgi vesicles from cardiac tissue using a discontinuous sucrose gradient. For complete details on the use and execution of this protocol, please refer to Tarazon et al. (2017).


Asunto(s)
Fraccionamiento Celular/métodos , Centrifugación por Gradiente de Densidad/métodos , Aparato de Golgi/fisiología , Miocardio/citología , Animales , Aparato de Golgi/metabolismo , Corazón/fisiología , Humanos , Sacarosa/química
19.
Sci Rep ; 10(1): 16604, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33024151

RESUMEN

Rab6, the most abundant Golgi associated small GTPase, consists of 2 equally common isoforms, Rab6A and Rab6A', that differ in 3 amino acids and localize to trans Golgi cisternae. The two isoforms are largely redundant in function and hence are often referred to generically as Rab6. Rab6 loss-of-function inhibits retrograde Golgi trafficking, induces an increase in Golgi cisternal number in HeLa cells and delays the cell surface appearance of the anterograde cargo protein, VSVG. We hypothesized that these effects are linked and might be explained by a cisternal-specific delay in cargo transport. In pulse chase experiments using a deconvolved, confocal line scanning approach to score the distribution of the tsO45 mutant of VSVG protein in Rab6 depleted cells, we found that anterograde transport at 32 °C, permissive conditions, through the Golgi apparatus was locally delayed, almost tenfold, between medial and trans Golgi cisterna. Cis to medial transport was nearly normal as was trans Golgi to TGN transport. TGN exit was unaffected by Rab6 depletion. These effects were the same with either of two siRNAs. Similar intra-Golgi transport delays were seen at 37 °C with RUSH VSVG or a RUSH GPI-anchored construct using a biotin pulse to release the marker proteins from the ER. Using 3D-SIM, a super resolution approach, we found that RUSH VSVG transport was delayed pre-trans Golgi. These visual approaches suggest a selective slowing of anterograde transport relative to 3 different marker proteins downstream of the trans Golgi. Using a biochemical approach, we found that the onset of VSVG endoglycosidase H resistance in Rab6 depleted cells was delayed. Depletion of neither Rab6A or Rab6A' isoforms alone had any effect on anterograde transport through the Golgi suggesting that Rab6A and Rab6A' act coordinately. Delayed cargo transport conditions correlate strongly with a proliferation of Golgi cisternae observed in earlier electron microscopy. Our results strongly indicate that Rab6 is selectively required for rapid anterograde transport from the medial to trans Golgi. We suggest that the observed correlation with localized cisternal proliferation fits best with a cisternal progression model of Golgi function.


Asunto(s)
Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Transporte de Proteínas/genética , Proteínas de Unión al GTP rab/fisiología , Retículo Endoplásmico/metabolismo , Aparato de Golgi/fisiología , Aparato de Golgi/ultraestructura , Células HeLa , Humanos , Isoenzimas/metabolismo , Microscopía Electrónica
20.
Biochem Biophys Res Commun ; 532(3): 336-340, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-32873390

RESUMEN

Golgi matrix protein 130 (GM130), encoded by GOLGA2, is the classical marker of the Golgi apparatus. It plays important roles in various mitotic events, such as interacting with importin-alpha and liberating spindle assembly factor TPX2 to regulate mitotic spindle formation. A previous study showed that in vitro knockdown of GM130 could regulate the meiotic spindle pole assembly. In the current study, we found that knockout (KO) mice progressively died, had a small body size and were completely infertile. Furthermore, we constructed an oocyte-specific GM130 knockout mouse model (GM130-ooKO) driven by Gdf9-Cre. Through breeding assays, we found that the GM130-ooKO mice showed similar fecundity as control mice. During superovulation assays, the KO and GM130-ooKO mice had comparable numbers of ovulated eggs, oocyte maturation rates and normal polar bodies, similar to the control groups. Thus, this study indicated that deletion of GM130 might have a limited impact on the maturation and morphology of oocytes. This might due to more than one golgin sharing the same function, with others compensating for the loss of GM130.


Asunto(s)
Desarrollo Embrionario/fisiología , Meiosis/fisiología , Proteínas de la Membrana/deficiencia , Oocitos/citología , Oocitos/fisiología , Animales , Autoantígenos/genética , Autoantígenos/fisiología , Desarrollo Embrionario/genética , Femenino , Fertilidad/genética , Fertilidad/fisiología , Aparato de Golgi/fisiología , Trastornos del Crecimiento/genética , Trastornos del Crecimiento/fisiopatología , Infertilidad Femenina/genética , Infertilidad Femenina/fisiopatología , Masculino , Meiosis/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Ratones , Ratones Noqueados , Oogénesis/genética , Oogénesis/fisiología , Ovulación/genética , Ovulación/fisiología , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...